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Abstract. Steady state simulation is used to study long-run behavior.
Usually only the expected value of the steady state probability distribu-
tion function is estimated. In many cases quantiles of this distribution
are of higher interest. In this paper a new usage of quantile estimators
is proposed, which is derived from mean value analysis and is based on
multiple independent replications. The advantage in using multiple in-
dependent replications is discussed, especially their ability to detect the
steady state phase of quantiles.

1 Introduction

The purpose of steady-state simulation is to study the long-run behavior of a
system. Using estimators for means, the results of the simulation can answer
questions about the average system state like: How many customers are there
on average in the queue? On the other hand, quantiles are known to be more
robust against outliers than mean values. Quantile estimation can also answer
questions like: What is the probability of more than k customers in the queue?
Questions of this kind are often of more interest to the decision-maker. The
complexity of quantile estimation is higher than that of mean value estimation,
but the estimation of quantiles can give a deeper insight into the system of
interest. This is true especially when several quantiles are estimated. A set of
several quantiles can be used to estimate the steady-state distribution function.
The estimation of the steady-state distribution is the ultimate goal in steady-
state simulation.

The most important property of a quantile estimator is its statistical accu-
racy. The variance of a quantile estimator leads to errors, which usually decrease
with an increase in the number of observations used for estimation. These er-
rors are often referred to as random errors. They are caused by the fact that a
stochastic measure is analysed and that every simulation is a statistical experi-
ment. The next source of error is the bias of the estimator, which is often called
the systematic error. This kind of error appears if e.g. assumptions about the
analysed data hold only approximately. If both the variance and the bias tend to
zero for a large number of observations the estimator is called consistent. More
details about these statistical properties of a quantile estimator can be found
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in [18]. There are further properties besides these statistical ones, which char-
acterize a suitable estimator. The storage requirements and the execution time
are quite important, because usually a large number of output observations need
to be processed to obtain trustworthy results. Therefore, not only the mathe-
matical definition of the estimator, but also the method of computation is of
interest. Efficient data structures and algorithms are important. To guarantee
a proper use of the estimator in many situations, even for inexperienced users,
it is important that the quantile estimator is easy to understand and that the
number of user specified parameters is small, preferably zero. A classification of
these properties is given in [13] for the general problem of estimating standard
errors.

1.1 Single Quantile

The estimation of one quantile of a steady state distribution, when simulating a
single instance (or “single replication”) of a time-stationary process, is consid-
ered by Iglehart, Seila, Heidelberger and Lewis, Jain and Chlamtac, Chen and
Kelton (see e.g. [17], [30], [16], [18] or the more recent article [4]). The methods
of Igelhart and Seila are limited to regenerative processes. The subdivision of the
output data into its regenerative cycles is a natural way to overcome the problem
of autocorrelation. The method of Seila extends the method of Igelhart by group-
ing the regenerative cycles into batches. The number of parameters which have
to be specified by the user is reduced by this batching approach to one param-
eter: the batch size. However, the determination of the batch size is a difficulty
common to every batching approach; it is difficult for an inexperienced user to
choose an appropriate value. The method of Heidelberger and Welch addresses
the problem of quantile estimation in dependent sequences. Their method is not
limited to regenerative processes. The point estimate based on ordered data is
still valid in the dependent case, but its variance is inflated leading to a larger
interval estimate. Two basic solutions are given. On the one hand, the higher
variance can be calculated directly with the spectral method (see [15]). On the
other hand, the data can be transformed to almost independent data by using
a batch means method (see e.g. [11]). The method of Jain and Chlamtac uses
a completely different kind of quantile estimator. Their estimator is based on
markers, which are adjusted when collecting new observations. This is done by
a piecewise-parabolic interpolation. Because of this interpolation, this method is
not recommended for quantile estimation of discontinuous distribution functions.
The estimator seems to be quite complicated compared to the usual estimators
based on ordered data. However, the principal advantage is that the method
requires only a constant (and small) amount of memory. Chen and Kelton de-
scribe a method that estimates a quantile by focusing on observations which
are located in the neighbourhood of this quantile. Their method is sequential to
ensure an accurate final estimate. However, the quality of this method has not
been exhaustively studied yet.

A method for quantile estimation in finite-horizon simulation is described
in e.g. [2]. This method is based on multiple replications of the finite-horizon
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simulation. These replications are dependent on each other because negative
correlation is introduced into their streams of input random numbers to reduced
variance. Avramidis and Wilson propose that this approach yields improvements
under special assumptions (see also [19]).

The estimation of one single quantile is usually done to analyse the tail
behaviour of a distribution. In this case typically the 0.95-quantile (resp. 0.05-
quantile) is estimated. For more extreme quantiles than this it might be more
appropriate to use rare event simulation. However, sometimes the median (0.5-
quantile) is estimated instead of the mean value, because the median is more
robust against outliers.

1.2 Several Quantiles

If the analyst is interested in the complete distribution function of a performance
measure the estimation of several quantiles is useful, because the quantiles de-
scribe the probability distribution at special points. The estimation of several
quantiles of the steady state distribution is addressed by Raatikainen (see [27]).
The method of Jain and Chlamtac is extended by introducing additional markers
to estimate more quantiles. The adjustment of the markers is done in the same
way as before. An investigation of the variance of this method is given in [28].

One of the main difficulties in quantile estimation is the high computational
effort and the large amount of storage needed to order the observations. There-
fore, Heidelberger and Lewis reduce the sample size by a maximum transfor-
mation (see [16]). Jain, Chlamtac and Raatikainen go further and avoid sorting
the output data by using an interpolation. In recent publications of Hashem,
Schmeiser and Wood (see [14] and [35]) or Chen and Kelton (see [5] and [6])
quantile estimators based on order statistics have become popular again. This
may be due to increased memory and processor speeds making these methods
more practical. Wood and Schmeiser describe a batching method for quantiles
which is similar to batch means and consider different quantile estimators, all
based on ordered observations. The batch statistic is given by one of four quan-
tile estimators, which are all based on ordered observations. Again, the difficulty
is how to chose an appropriate batch size. In [5] the previous method of estimat-
ing a single quantile is extended to the problem of estimating several quantiles.
Again, the extended method is sequential as the previous version.

1.3 Replications for Quantile Estimation

Very little is known about steady state quantile estimators based on multiple
replications. We believe that the independence of the replications enables the use
of new estimators with lower complexity and maybe higher performance. The
use of multiple independent replications is discussed in the next section. In the
following sections a new class of estimators is introduced, which are based on
independent replications. In the last section we give conclusions of our research
work so far.
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2 Independent Replications

The main problem in quantile estimation for steady-state performance measures
is that the output process X1, X2, . . . is typically not stationary and is auto-
correlated, see e.g. [23]. Therefore, the number of required output data can be
immense, which causes a problem when storing and sorting the output data.
Using p independent replications of the simulation is a well known approach to
obtain independent sequences of output data. Let

{
{xj,i}nj

i=1

}p

j=1
denote the col-

lected observations. xj,i is the ith observation of the jth replication. nj denotes
how many observations are collected in the jth replication. Collecting the same
number of observations of each replications ensures that ∀j : nj = n. Addition-
ally, let assume that the ith observations of all replications describe the same
measure. For example the ith observation could be the waiting time of the ith
customer leaving a system. These assumptions ensure that the observations of
the ith column are independent and identically distributed (iid).

independent: Pr [∀j : Xj,i ≤ x] =
∏
j

Pr [Xj,i ≤ x] (1)

identical: ∀j : FXj,i(x) = FXi(x) (2)

FXi
(x) = Pr{Xi ≤ x} denotes the cumulative probability distribution function

(CDF) of a random variable Xi. Xj,i is the random variable representing the ith
observation in the jth replication. These properties help to overcome the main
problem of quantile estimation in a single simulation run and enables the use of
traditional quantile estimators for iid random samples of Xi.

FXi
(x) can be estimated by

F̂Xi
(x) =

1
p

p∑
j=1

ζ(x− xj,i) (3)

with

ζ(∆) =
{

1 if ∆ ≥ 0
0 otherwise . (4)

F̂Xi is called the empirical cumulative distribution function (ECDF). If several
values of F̂Xi are of interest it is advisable to base the estimation on a sorted
random sample. Let {yj,i}p

j=1 be the sorted values of {xj,i}p
j=1, so that yj,i is

the jth order statistic. Based on these order statistics (3) can be transformed to

F̂Xi(x) =
1
p

min(j|x ≥ yj,i) (5)

with 1 ≤ j ≤ p and F̂Xi
(x) = 0 for x < y1,i. Note, that the value yj,i is an

estimate of the j/p-quantile of FXi
, compare Section 4.

Multiple independent replications enable the estimation of FXi . In [8] this
is used to depict the transient behavior of the output process by plotting a
suitable number of quantiles over time. Another application, which is based on
the estimation of FXi

, is described in [3] or [9] and is discussed in the next
section.



Steady State Quantile Estimation

3 Truncation Point Detection

To start a simulation experiment, the simulation model has to be initialized at
an initial state I. This initial state has an impact on the random variable Xi

and influences its CDF. Therefore, the initial state I has to be included in the
CDF of Xi: FXi

(x|I) := Pr[Xi ≤ x|I]. Assuming an ergodic system, FXi
(x|I)

converges towards FX(x) = limj→∞ FXi
(x|I) which is called the marginal CDF

of the output process {Xi}∞i=1 in steady state. The primary concern of steady
state simulation is to determine this distribution or its specific measures, such
as moments or quantiles.

In general the influence of I is significant at the beginning and decreases with
increasing model time. If the interest is focused on the steady state behavior
of the system, this initialization bias is obviously undesirable. A common way
to reduce the influence of I is to truncate the “most” influenced part of the
stochastic output process X1, . . . , Xl−1. Following this strategy the problem is
to find an appropriate truncation point l. In the literature the steady state phase
{Xj}∞j=l is described as a phase which is ”relatively free of the influence of initial
conditions” [12] or by the statement that Xl, Xl+1, . . . ”will have approximately
the same distribution” [22]. In practise there will often be an observation index
l, such that

∀i ≥ l : FXi
(x|I) ≈ FX(x) (6)

holds, unless the process {Xi}∞i=1 is statistically unstable. Of course l should
be finite, and should be the minimum of all indices, for which (6) holds. Even
though the estimation of FX(x) is the ultimate goal of steady state simulation,
the expected value of the steady state random variable E[X] = limj→∞E[Xi]
is often the only measure of interest. In this situation it is a generally accepted
approach to replace (6) by

∀i ≥ l : E[Xi] ≈ E[X] . (7)

In general, however, the convergence of the expected value is only a necessary
condition for stationarity, and not sufficient, see [34]. Therefore, (6) can be ap-
plied in analysis of arbitrary measures, especially for steady state quantile esti-
mation. If ever, (7) should be used in mean value analysis only.

Finding a truncation point on the basis of (6) is not straightforward. It is
therefore not very surprising that the most common methods for detection of
the truncation point are based on (7), see [25], or on a visual inspection of trans-
formed output data, see e.g. [34]. As already shown in the previous section, FXi

can be estimated from multiple independent replications. A completely auto-
mated approach to detect a suitable value l is described in [9]. This heuristic
assumes that at least p = 30 parallel replications are available. Its worst case time
complexity is O(np log(p)), which is quite efficient, regarding that the number
of collected observations is np.
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3.1 Nonparametric Homogeneity Test

A very important point of this truncation point detection method is the homo-
geneity test used. In the goodness-of-fit problem the null hypothesis

H0 : FX0(x) = FX1(x) = · · · = FXk−1(x) (8)

is checked by a homogeneity test. A k-sample version compares k random sam-
ples with each other. For our purpose, a nonparametric test with no further
assumptions about FXi

is needed.
The Kolmogorov-Smirnov test, see [20] and [32], is a nonparametric homo-

geneity test. In the 2-sample version the test statistic is

KS2 = sup
−∞<x<∞

|F̂X0(x)− F̂X1(x)| , (9)

where F̂X0(x) and F̂X1(x) are the ECDF of X0 and X1 consisting of p0 resp. p1

random values x0,0, . . ., xp0,0 and x0,1, . . ., xp1,1 in sorted order.
An algorithmic approach to calculate KS2 can be based on two pointers,

which are shifted within the range of the random variable. By shifting these
pointers in parallel through the interval [min(x0,0, x0,1),max(xp0,0, xp1,1)] the
difference F̂X0(x)− F̂X1(x) can be calculated for every value of x. Critical values
for KS2 are known for different α-levels.

The Anderson-Darling test, see [1], is a nonparametric homogeneity test, like
the Kolmogorov-Smirnov test. In [29] a k-sample version is introduced, which
uses the test statistic

ADk =
k−1∑
i=0

pi

∫ ∞

−∞

(F̂Xi(x)−H ′(x))2

H ′(x)(1−H ′(x))
dH ′(x) . (10)

pi is the sample size of Xi and H ′(x) denotes the ECDF of the pooled sample
of all Xi with 0 ≤ i ≤ k − 1. A computational formula for ADk is given by

ADk =
1
N

k−1∑
i=0

1
pi

N−1∑
j=1

(NMij − jpi)2

j(N − j)
, (11)

where Mij is the number of observations in the sample of Xi, which are smaller
or equal than Zj . Z1 < Z2 < · · · < ZN denotes the pooled and ordered sample
of H ′(x) with N =

∑k−1
i=0 pi.

In [29] it is shown that E [ADk] = k − 1 holds if all FXi
(x) are continuous

and if the null hypothesis, see (8), can be assumed. To check the null hypothesis,
additionally the variance of ADk is needed. It is given by

Var [ADk] =
aN3 + bN2 + cN + d

(N − 1)(N − 2)(N − 3)
. (12)

For details on the calculation of a, b, c and d see [29]. ADk can now be standard-
ized by

Tk =
ADk − E [ADk]

Var [ADk]
. (13)
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Critical values of Tk are tabulated for k < 12 and various α-level. If k ≥ 12
holds, the critical value of Tk is given by

tk = b0 +
b1√
k − 1

+
b2

k − 1
. (14)

Again, values of b0, b1 and b2 are tabulated for various α-level.

3.2 Accuracy

The most interesting performance measure of the truncation point detection
method is its ability to estimate l. Our experience with previous implementations
of this method ([3] and [9]) is that its accuracy is lower if the initial state I
influences mostly the tail of the density function of FXi

(x|I). For example if the
mean is constant but the variance is changing over time. We believe that this
problem is introduced through the KS2 statistic, which is based on the maximum
difference.

To test whether the KS2 or the ADk (with k = 2) statistic delivers better
results, we applied them on two artificial output processes with a well defined
truncation point l:

X
(A)
t =

{
εt + x− tx

l if t < l,

εt else.
(15)

X
(B)
t =

{
εt · (x− tx−1

l ) if t < l,

εt else.
(16)

with x = 10, l = 100. The randomness is introduced by the Gaussian white
noise process εt with the distribution N (0, 1). X

(A)
t is governed by a transient

mean value, whereas X
(B)
t is governed by a transient variance. The results of

the truncation point detection method are depicted in Figure 1. Experiments
are done for various values of p ≤ 200. The abscissa shows p, the number of
parallel replications, and the ordinate shows the estimated truncation point l.
It is clearly evident that for both processes the estimation of l based on ADk is
closer to the theoretical value l = 100.

3.3 Time Complexity

The results of the previous section clearly suggest the use of ADk instead of KS2.
However, in practise the time complexity to calculate these statistics is another
important performance measure. In the best case the calculation of ADk should
not require a higher computational effort. The worst case time complexity of
both statistics is investigated next.

Theorem 1. The worst case time complexity of the Kolmogorov-Smirnov 2-
sample test is O(N log N) with N = p0 + p1.
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(a) Transient Mean: X
(A)
t (b) Transient Variance: X

(B)
t

Fig. 1. Performance of KS2 and ADk.

Proof. The random samples of X0 and X1 have to be sorted. Sorting of these two
samples can be done in O(p0 log p0 +p1 log p1). Assuming that p0 > 0 and p1 > 0
the unequation p0 log p0 + p1 log p1 < N log N holds. Therefore, the execution
time of sorting can be bounded by O(N log N).

The calculation of the difference |F̂X0(x)− F̂X1(x)| at a given value of x can
be done in O(1), because only a constant number of basic arithmetic operations
are involved. The algorithm is passing through the range of x by jumping from
a xi,j to its successor in sorted order. Because there are p0 + p1 = N values of x
in total, the maximum difference can be calculated in O(N).

If the given samples are small, the critical value can be looked up in the given
table in O(1). If the given samples are large, the critical value can be calculated
by a constant number of basic arithmetic operations, which leads again to O(1).
The comparison of the maximum difference and the critical value needs another
O(1).

The summary of all results leads to O(N log N) + O(N) + O(1) + O(1). This
shows, that the cardinal operation of the Kolmogorov-Smirnov 2-sample test is
the sorting of the data. Therefore, the worst case execution time is O(N log N).

ut

Theorem 2. The worst case time complexity of the execution of a Anderson-
Darling k-sample test is O(N2 + N log N + kN) with N =

∑k−1
i=0 pi.

Proof. Sorting the random samples of Xi can be done in O(pi log pi). Conse-
quently, sorting of all k random samples can be done in O(

∑k−1
i=0 pi log pi). Be-

cause ∀i(0 ≤ i < k) : pi > 0 is valid, the overall sorting time can can be
bounded by O(

∑k−1
i=0 pi log pi) < O(N log N). By passing in parallel through

all k sorted random samples the sequence Z1 < Z2 < · · · < ZN can be gen-
erated. Each value has to be accessed only once, therefore, this can be done
in O(

∑k−1
i=0 pi) = O(N). The ith column {Mij}N

j=1 of the Mij-matrix can be

calculated by passing in parallel through {Zj}N
i=j and the ith sorted random

sample. This is done in O(N + pi). Processing all k columns leads to a run time
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of O(kN +
∑k−1

i=0 pi) = O(kN + N) = O(kN). If the Mij-matrix is known, the
calculation of the fraction in (11) is done in O(1), because a constant number
of arithmetic operations are needed. The inner sum of that equation loops over
N − 1 values and the outer sum loops over k values. Therefore, the calculation
of (11) needs k(N − 1) · O(1) = O(kN) steps. Combining all previous results
leads to O(N log N) + O(N) + O(kN) + O(kN) = O(N log N + kN), which is
the overall worst case execution time to calculate the test statistic ADk.

To normalize the test statistic ADk its variance is needed. Here, the calcula-
tion of the parameters a, b, c and d, see (12), is not discussed in detail. However,
the cardinal equation to calculate these parameters is

N−2∑
i=1

N−1∑
j=i+1

1
(N − i)j

, (17)

see [29]. The calculation of the fraction in (17) is done in O(1). Both, the inner
sum and the outer sum of that equation loop over maximum N − 2 values.
Therefore, (17) can be calculated in O((N − 2)2) · O(1) = O(N2) steps. The
calculation of Tk, see (13), can now be done with a constant number of basic
arithmetic operations in O(1). Therefore, the complete normalization can be
done in O(N2).

The critical value tk can be calculated in O(1), no matter of the value of
k. Because in every case a constant number of tabled values and basic arith-
metic operations are needed. Combining all results, the overall run time of the
Anderson-Darling k-sample test is given by O(N log N +kN)+O(N2)+O(1) =
O(N2 + N log N + kN). ut

The test statistic ADk depends on the difference of the ECDFs. In contrast to
the KS2 statistic not only the maximum difference is used, but the integral resp.
sum over the whole range of x. The higher computational complexity is caused
by the calculation of Var [ADk], which is not depending on the data itself, but
on the size of the random samples. If many Anderson-Darling tests on random
samples of constant size are performed Var [ADk] has to be calculated only once.
This is exactly the situation when performing the truncation point detection
algorithm on the output data of multiple replications, because ∀j : pj = p. The
dominating factor in the calculation of the ADk statistic itself is the sorting
of the data. Therefore, the time complexity of the truncation point detection
method remains the same, no matter whether the KS2 or the ADk statistic is
used. The use of ADk involves an additional calculation time of Var [ADk] before
the simulation is started. Compared to the whole run time of this method, the
additional calculation time is negligible.

The empirical investigation shows that the truncation point detection based
on the statistic ADk is more accurate. Thus, the KS2 statistic, which is used in
[8], should be replaced by ADk.
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4 Quantile Estimators for Independent Replications

The q-quantile of FXi
is defined by q = FXi

(x(q, i)) and, therefore,

x(q, i) = F−1
Xi

(q) = inf{x|FXi
(x) ≥ q} (18)

is the location of the q-quantile in the case of a continuous distribution FXi
(x)

with 0 ≤ q ≤ 1. As before, let {yj,i}p
j=1 be the ordered values of {xj,i}p

j=1. A
valid estimator for the location of the q-quantile at observation index i is given
by

x̂(q, i) = ydpqe,i . (19)

To avoid rounding of non integer values, it is suitable to choose q = j/p with
j = {1; 2; · · · ; p}.

In the previous section an approach to detect a valid truncation point l is
described, so that (6) is fulfilled. The homogeneity test ensures that the difference
in distribution among the remaining Xi is negligible. In consequence, all {yj,i}∞i=l
describe the j/p-quantile of the steady state probability distribution FX .

x̂(q) =
1

n− l + 1

n∑
i=l

x̂(q, i) (20)

is a point estimate of F−1
X (q). By performing p independent replications we

obtain p quantiles of FX at q = j/p with j = {1; 2; · · · ; p}. They are equally
distributed within the probability domain [0; 1].

Theorem 3. x̂(q) is an unbiased estimator of F−1
X (q) for large p and l.

Proof. The expected value of (20) is

E [x̂(q)] =
1

n− l + 1

n∑
i=l

E [x̂(q, i)] (21)

=
1

n− l + 1

n∑
i=l

E
[
ydpqe,i

]
.

E
[
ydpqe,i

]
= F−1

Xi
(q) holds for large values of p (see [7] or [6]). Furthermore, all

Xl, Xl+1, . . . are assumed to be identically distributed, i.e. ∀i : FXi
(x) = FX (x).

Equation (21) evaluates to

E [x̂(q)] =
1

n− l + 1

n∑
i=l

F−1
Xi

(q) (22)

=
1

n− l + 1

n∑
i=l

F−1
X (q)

= F−1
X (q) .

The estimator x̂(q) is asymptotically unbiased, i.e. E [x̂(q)]−F−1
X (q) = 0, because

(22) holds for large p and l. ut
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Every simulation is a statistical experiment. Point estimators never return ex-
act values, even if they are unbiased. Confidence intervals (or interval estimates)
are essential to provide convincing results. To establish a confidence interval for
(20) its variance Var [x̂(q)] is needed. Note, that {yj,i}∞i=l (row) is autocorrelated
and the variance cannot be estimated directly. The form of estimator (20) is
identical to mean value estimators of single simulation runs. Here the specialty
is that each component describes the j/p-quantile. Therefore, known techniques
for variance estimation of mean value estimators can be applied. Spectral anal-
ysis and batching methods are commonly used in mean value analysis.

4.1 Spectral Analysis

In [15] a confidence interval for the steady state mean value is generated by
spectral analysis on basis of a single simulation run. This confidence interval is
used to control run length to obtain estimates with a specified accuracy. This
method assumes, that the output sequence converges to a steady state behaviour
which can be modeled as a covariance stationary process. The problem of the
initial transient phase is not addressed, but the correlation of the output data.
This approach is originally used for mean value analysis. In conjunction with
the maximum transformation, it is also used for quantile estimation of one single
quantile, see [16].

The sequence {yj,l, yj,l+1, . . . , yj,n} fulfils the precondition for this spectral
method, even though the analysed measure is the j/p-quantile and not the mean.
Furthermore, the sequence starts with the lth observation so that the problem
of the initial transient can be neglected at this stage. The spectral method of
Heidelberger and Welch seems to be applicable in this context. We describe now
how spectral analysis can be used to establish a confidence interval for the point
estimator (20).

Let {yj,i}n
i=l be realization of the stochastic process {Yj,i}n

i=l. The covariance
function γ(k) is defined by

γ(k) = Cov [Yj,i, Yj,i+k] . (23)

Because the process is assumed to be covariance stationary the absolute value
of i does not matter, as long as l ≤ i. The spectral density ρ(f) at frequency f
can be derived by

ρ(f) =
+∞∑

k=−∞

γ(k) cos(2πfk) . (24)

According to Heidelberger and Welch,

Var [x̂(j/p)] =
ρ(0)

n− l + 1
(25)

is valid if n − l + 1 is large. This means that a confidence interval for (20) can
be constructed if ρ(f) can be estimated at f = 0.
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The periodogram I (m/N) with N = n− l + 1 is defined by

I (m/N) =
|
∑n

j=l Yj,ie
−2π

√
−1(i−1)m/N |2

N
. (26)

It helps to estimate ρ(m/N) because

– E [I (m/N)] = ρ(m/N),
– Var [I (m/N)] = ρ2(m/N) and
– Cov [I (m/N), I (m′/N)] = 0

hold for 0 < m < N/2 and m 6= m′. If some points of I (m/N) are known, a
polynomial fit can be used to estimate ρ(0). However, in [15] is demonstrated
that the use of I (m/N) is not optimal for this purpose because the variance of
I (m/N) is not constant and its skewness is not zero. The transformation to

J (fm) = log
(

I ((2m− 1)/N) + I (2m/N)
2

)
(27)

with fm = (4m− 1)/(2N) leads to more convenient properties:

– E [J (fm)] = log (ρ(fm))− 0.27,
– Var [J (fm)] = 0.645 and
– Cov [J (fm), I (fm′)] = 0

hold for 0 < m < N/2 and m 6= m′. Furthermore, the skewness of J (fm) is
about zero.

The polynomial fit is based on two parameters. The first parameter K is
the number of points of J (fm) used to obtain the polynomial fit. The second
parameter d is the degree of the polynomial. In [15] an algorithm is given to
estimate ρ̂(0). In [24] the standard setting d = 2 and K = 25 of this algorithm
is discussed. A positive slope of ρ̂(f) at f = 0 can lead to a too small estimate
of ρ(0). By using the maximum of ρ̂(0) for d = 0 or d = 2 the coverage of the
confidence interval is increased. Finally, a confidence interval can be derived by
assuming that

x̂(q)− F−1
X (q)√

ρ̂(0)
n−l+1

(28)

is governed by a t-distribution.
Using order values of p independent replications, as described in Section 2, p

output processes {yj,i}∞i=l are available and (20) can be applied for all q = j/p
with 1 ≤ j ≤ p. x̂(j/p) and Var [x̂(j/p)] can be calculated for all j separately,
as well as the confidence intervals based on Var [x̂(j/p)]. By calculating several
quantiles we receive an estimate of the steady state probability distribution FX .
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4.2 Batching Method

The literature about batching methods is vast. Possibly one of the earliest de-
scribed batching methods in conjunction with simulation output analysis is [10].
The basic idea is to divide the output process into subsequences, called batches,
of equal size. For all batches a batch statistic is calculated, e.g. the batch mean.
The use of this approach is that the batch statistics become approximately inde-
pendent for a large batch size. The assumed independence helps to estimate the
variance of the batch statistics. The difficulty of this method is the determination
of an appropriate batch size.

To keep it simple, we use non-overlapping and non-disjoint batches. The
transformed data is given by

zj,i(m) =
1
m

m∑
k=1

yj,(l−1+im−k) (29)

with 1 ≤ j ≤ p, 1 ≤ i ≤ n′ and n′ = n−l+1
m . The size of the resulting data matrix

is reduced by 1/m. The interval estimator x̂(q) can now be calculated by

x̂(q) =
1

n− l + 1

n∑
i=l

ydpqe,i =
1
n′

n′∑
i=1

zdpqe,i(m) . (30)

This equation is a different denotation of (20), because the sum over the batch
means is calculated. With an appropriate choice of m the batch means zdpqe,1(m),
zdpqe,2(m), . . . are approximately independent of each other. Under this assump-
tion Var [x̂(q)] can be estimated, by

σ2
x̂(q) =

1
n′(n′ − 1)

n′∑
i=1

(
zdpqe,i(m)− x̂(q)

)2 (31)

as it is done in [10]. (x̂(q) − F−1
X (q))/σx̂(q) is approximately t-distributed with

n′ degrees of freedom, thus a confidence interval can be constructed. For every
q = j/p with 1 ≤ j ≤ p the expected value E [x̂(q)], its variance Var [x̂(q)]
and the belonging confidence interval can be estimated. We receive p interval
estimates of quantiles of the steady state distribution FX (x).

To estimate confidence intervals for all q = j/p an overall batching approach
can be performed, which operates on {yj,i}∞i=l for all j in parallel. Again, the
determination of an appropriate overall batch size m, which is valid for all j, is
the bottleneck. Tests for independence based on runs, see [31], or lag-1 autocor-
relation, see [21], are used to detect a valid batch size. Most lag-1 autocorrelation
test assume the normality of the distribution, which is only approximately true.
For small sample sizes complex corrections of the test statistic are done, see e.g.
[11]. Therefore, we introduce a heuristic test, which is based on milder assump-
tions and promises good performance in our context of determining the overall
batch size m.



Eickhoff, M.

Median Confidence Interval for Pearson’s Correlation Coefficient. Let
r̂(p)(P1) be Pearson’s correlation coefficient of the original lag-1 paired batch
means {(zj,i(m); zj,i+1(m))}n′−1

i=1 . And let r̂(p)(Pk) be Pearson’s correlation co-
efficient for the lag-1 paired data of the kth permutation of {zj,i(m)}n′

i=1 with
2 ≤ k ≤ (n′!). In [26] the first four moments of Pearson’s correlation coeffi-
cient are derived. Here, the first and the third moment are of special interest:
E

[
r̂(p)

]
= 0 holds even for small samples and Skew

[
r̂(p)

]
= 0 holds approxi-

mately. Skew
[
r̂(p)

]
defines the degree of asymmetry of the distribution of r̂(p).

Therefore, Fr̂(p)(0) = 0.5 is approximately true. The null hypothesis of our test
is that {zj,i(m)}n′

i=1 is an independent sequence.

Pr
[
|r̂(p)(Pk)| < |r̂(p)(P1)|

]
=

1
2

(32)

holds under the null hypothesis and for a randomly chosen permutation Pk. For
K randomly chosen permutations Pk1 , . . . , PkK

we can derive

Pr
[
∀l(1 ≤ l ≤ K) : |r̂(p)(Pkl

)| < |r̂(p)(P1)|
]

=
1

2K
. (33)

On base of this equation a confidence interval can be established:

Pr
[
−∆ ≤ r̂(p)(P1) ≤ ∆

]
= 1− 1

2K
(34)

with halfwidth
∆ = max

1≤l≤K

(
|r̂(p)(Pkl

)|
)

. (35)

If r̂(p)(P1) is not within the confidence interval, the null hypothesis must be re-
jected at confidence level 1− 1

2K . For a general discussion on median confidence
intervals see [33]. The advantage of using this confidence interval is that the
assumption of zero skewness is milder than the assumption of a normal distri-
bution. For only K = 6 permutations the confidence level is already > 0.95 and
K can be regarded as a constant parameter. Therefore, the time complexity of
the confidence interval calculation is the same as for the calculation of r̂(p)(P1)
itself. For our purpose of estimating the overall batch size m for p independent
replications this correlation test is performed on {zj,i(m)}∞i=1 for any j.

5 Future Work

An unsolved issue is the selection of a stopping rule for sequential estimation of
quantiles. Stopping rules for mean value analysis are based on the relative error.
The situation for quantiles is slightly different, especially if several quantiles are
accessed in parallel. Our ultimate goal is to estimate the steady state probability
distribution based on quantiles.

After solving this issue performance measures of the described quantile esti-
mators can be investigated and compared. The most important measure is the
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statistical accuracy, which can be determined e.g. by coverage analysis of the
interval estimators. Empirical investigations of test models with known steady
state distributions are necessary. Another important measure is the algorithmic
complexity, involving the analysis of the needed computation time and storage
requirements.

6 Conclusion

A survey of the recent state of the research work on steady state quantile es-
timation is given in the introduction. The advantage of the use of multiple in-
dependent replications is discussed. The suitability of multiple replications for
steady state quantile estimation is pointed out.

In contrast to other methods, the use of multiple replications enables the
detection of the steady state phase based on the empirical cumulative distribu-
tion function. The statistical accuracy of the truncation point detection method
is increased by using a homogeneity test based on the Anderson-Darling test
statistic. The computational complexity remains the same, because only miner
calculations are added in the beginning of the simulation experiment.

A new point estimator for quantiles is proposed, which is based on ordered
values of multiple replications. In addition two ways of constructing confidence
intervals for this point estimator are discussed, which are derived from mean
value analysis.

One of the introduced interval estimators involves the determination of an
overall batch size for the ordered output streams describing different quantiles.
For this purpose a test of independence is proposed by calculating median con-
fidence intervals for Pearson’s correlation coefficient. This test is based on mild
assumptions.
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