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ABSTRACT

For simulation output the estimation of several quantiles
usually provides a deeper insight than mean value analy-
sis. So far, quantile estimation has usually been applied
to show the long run behaviour of a system. In this paper
we describe a method to depict several quantiles over sim-
ulation time to show the transient behaviour. This method
is based on independent replications and its capability is
demonstrated by examples with different kinds of transient
behaviour.

INTRODUCTION

The purpose of steady-state simulation is to study the
long-run behavior of a system. Using estimators for
mean value analysis, the results of the simulation can
answer questions about the average system state like: How
many customers are there on average in the queue? On
the other hand, quantiles are known to be more robust
against outliers than mean values. Quantile estimation
can also answer questions like: What is the probability
of more than k customers in the queue? Questions of
this kind are often of more interest to the decision-maker.
The complexity of quantile estimation is higher than the
complexity of mean value estimation, but the estimation
of quantiles can give a deeper insight into the system of
interest. This is true, especially when several quantiles
are estimated. A set of several quantiles can be used
to estimate the steady-state distribution function. The
estimation of the steady-state distribution is the ultimate
goal in steady-state simulation. For details on quantile
estimation see e.g. [Heidelberger and Lewis, 1984],
[Jain and Chlamtac, 1985], [Raatikainen, 1987] and
[Chen and Kelton, 1999].

An extension of the estimation of several quantiles is to
estimate these quantiles over model time. This provides a
deep insight into the transient behaviour of the system of
interest. In steady-state simulation this is useful to verify if
a steady-state phase exists, i.e. that the probability distri-
bution function of the analyzed performance measure con-
verges to a steady-state distribution function. Furthermore

it can be verified, e.g, whether the transient behaviour is
monotone or if there are some unexpected issues which de-
mand further investigation. However, the truncation point
for the estimation of steady-state performance measures
should not be determined by a visual inspection of these
quantiles over time (compare [Bause and Eickhoff, 2003]).

In applications finite-horizon simulation is frequently
used to examine a given situation with a certain ini-
tial state. In contrast to steady-state simulation the
transient behavior of the system is the central point of
analysis, even though, the usual approach is to esti-
mate only mean values. Again, the estimation of sev-
eral quantiles over time provides a deeper insight and
extends the results of commonly used approaches. For
a comparison of finite-horizon simulation and steady-
state simulation see e.g. [Law and Kelton, 2000] and
[Alexopoulos and Kim, 2002].

The main problem in quantile estimation for steady-state
performance measures is that the output data X1, X2, . . .
of a single simulation run is typically not stationary and
is autocorrelated (see e.g. [Lee et al., 1999]). There-
fore, the amount of required output data can be immense,
which causes a problem when storing and sorting the out-
put data. Using p independent replications of the simula-
tion is a well known approach to obtain independent se-
quences of output data. If these replications are synchro-
nized (see [Bause and Eickhoff, 2002]) an independent and
identically distributed (iid) random sample {xj,i}p

j=1 of p
observations of Xi is available at each observation index i.
This property helps to overcome the main problem of quan-
tile estimation in a single simulation run and enables the use
of traditional quantile estimators for iid random samples.

Let Fi(x) = Pr{Xi ≤ x} denote the cumulative proba-
bility distribution function of Xi. The q-quantile at obser-
vation index i is defined by the equation q = Fi(xq) and,
therefore,

xq = inf{x : Fi(x) ≥ q} = F−1
i (q)

is the location of the q-quantile in the case of a continu-
ous distribution Fi(x). Let {yj,i}p

j=1 be the order statistic
of {xj,i}p

j=1. A valid estimator for the location of the q-
quantile at observation index i is given by

x̂q = y�pq�,i

The half width of a confidence interval of x̂q can be de-
scribed in two ways:

x̂q ∈ xq ± ε′q and x̂q ∈ xq±εq



ε′q describes an interval in the range of the measure and
εq describes an interval in the range of the probability (see
[Chen and Kelton, 1999]). Note, the interval q ± εq should
not exceed the bounds 0 and 1. In nonparametric statistics
ε′q can be calculated from

Pr{yl,i ≤ xq < yu,i} = 1 − αl,u (1)

=
u−1∑
j=l

(
p

j

)
qj(1 − q)p−j

by decreasing l and increasing u until the chosen con-
fidence level (1 − α) ≤ (1 − αl,u) is reached (see
[Conover, 1999] and [Heidelberger and Lewis, 1984]). In
[Chen and Kelton, 1999] is shown that εq can be chosen
from the inequality

p ≥
z2
1−α/2q(1 − q)

ε2q
(2)

where z1−α/2 is the 1 − α/2 quantile of the standard nor-
mal distribution. Both, Equation (1) and Inequality (2) do
not depend on the output data itself. Therefore, both formu-
las can be used to estimate the half width before the simu-
lation experiment starts. However, both formulas mainly
depend on the number of replications p, because the confi-
dence level 1−α can be considered as a constant parameter.
Therefore, p is the most important parameter in the methods
described in subsequent sections.

To show the transient behavior of the system of interest
a plot of several quantiles over time is needed. The quan-
tiles should be chosen with non overlapping confidence in-
tervals. Therefore, a method is needed which determines
adequate quantiles based on parameter p, because the half
width of the confidence interval of x̂q depends on the num-
ber of replications p. In the following section two alter-
native methods are proposed and discussed. The better
method is used to examine examples with a variety of dif-
ferent transient behaviors. In the last section some conclu-
sions are given.

SELECTION OF QUANTILES

As already pointed out, the calculation of the confidence
interval based on Equation (1) and Inequality (2) does not
depend on the output data itself, but on the number of repli-
cations p, the confidence level 1 − α and q itself. Because
the confidence level can be considered as a given parameter
the main question is: How to choose several q-quantiles as
a function of p? The basic idea of the algorithms described
in this section is to choose the 0.5-quantile as the starting
point and to choose all other quantiles in a way that their
confidence intervals do not overlap. A larger number of
replications involves smaller confidence intervals and this
enables the selection of more quantiles with non overlap-
ping confidence intervals.

Our first method is based on Equation (1). In the begin-
ning the first quantile 0.5 is given and its confidence interval
is calculated by extending l and u until the wanted confi-
dence level 1 − α is reached. l and u describe the indexes
in {yj,i}p

j=1 of the bounding values of the confidence inter-
val. The selection of the next two quantiles which have a
non overlapping and non disjoint confidence interval is not
straight forward, because Equation (1) has no closed form.

Therefore, we perform two binary searches in the directions
above and below 0.5. The binary search in the direction be-
low 0.5 stops if a quantile is found with a upper bound u′

being equal to l. Analogously, the binary search in the up-
per direction stops if a quantile is found with a lower bound
l′ equal to u. The result of these binary searches are the
next displayed quantiles. The binary searches are repeated,
until it is not possible to find another quantile with a con-
fidence interval in the unprocessed area between the last l
and 1 (resp. u and p). This calculation can be performed
before the simulation experiment starts and, therefore, the
run time of this method does not really matter. For conve-
nience a linear search, leading to a worse run time, could be
performed instead of the binary search.

Equ. (1) Inequ. (2)
p = 100 p = 1000 p = 100 p = 1000
q (l;u) q (l;u) q (q ± εq) q (q ± εq)

.003 ( 0;.006)
.010 ( 5; 16) .012 (.006;.018)
.024 ( 16; 32) .026 (.018;.034)
.042 ( 32; 53) .045 (.034;.056)

.08 ( 3;13) .066 ( 53; 79) .09 (.04;.13) .069 (.056;.082)
.094 ( 79;110) .098 (.082;.113)
.127 (110;145) .131 (.113;.148)

.19 (13;26) .164 (145;184) .20 (.13;.26) .167 (.148;.187)
.205 (184;226) .208 (.187;.230)
.250 (227;273) .252 (.230;.274)

.34 (26;42) .297 (273;321) .34 (.26;.42) .298 (.274;.322)
.346 (321;371) .346 (.322;.371)
.396 (371;422) .397 (.371;.422)
.448 (422;474) .448 (.422;.474)

.5 (42;59) .5 (474;527) .5 (.42;.58) .5 (.474;.526)
.553 (527;579) .552 (.526;.578)
.604 (579;630) .603 (.578;.629)
.655 (630;680) .653 (.629;.678)

.67 (59;75) .704 (680;728) .66 (.58;.74) .702 (.678;.726)
.751 (729;774) .748 (.726;.771)
.795 (774;817) .792 (.771;.813)

.81 (75;88) .836 (817;856) .80 (.74;.87) .833 (.813;.852)
.873 (856;891) .869 (.852;.887)
.906 (891;922) .902 (.887;.918)

.93 (88;97) .935 (922;948) .91 (.87;.96) .931 (.918;.944)
.958 (948;969) .955 (.944;.966)
.977 (969;985) .974 (.966;.982)
.990 (985;996) .988 (.982;.994)

.997 (.994; 1)

Table 1: This table shows the selected quantiles with their
confidence intervals chosen by the method based on Equa-
tion (1) and by the method based on Inequality (2) with
1 − α = 0.9 and p = 100 resp. p = 1000.

The first two columns of Table 1 show the rounded result
of this method for p = 100 and p = 1000 independent
replications with a confidence level of 1 − α = 0.9. The
method selects 7 quantiles for p = 100 and 27 quantiles
for p = 1000. The values in brackets show the l and the u
index of the quantile as defined in Equation (1).

The second investigated method is based on Inequality
(2). Again, the starting point is the 0.5-quantile and the
method searches for more quantiles in the directions below
and above 0.5. In this case a binary search is not needed,
because the next quantile can be calculated directly with the
help of Inequality (2) and the following condition:

qk − εqk
= qk+1 + εqk+1 (3)

This condition is valid for the direction below 0.5, a con-
dition for the direction above 0.5 can be formulated analo-
gously. qk is given and εqk

can be calculated by Inequality



(a) 50 replications (b) 100 replications

(c) 500 replications (d) 1000 replications

Figure 1: Several quantiles over time: ARMA process.

(2). Therefore, the substitution ak = qk − εqk
is calculable

right away. Equation (3) can be transformed to:

ak = qk+1 + z1−α/2

√
qk+1(1 − qk+1)

p

Eliminating the square root leads to

0 = q2
k+1b + qk+1ck + dk

with b = 1
z2
1−α/2

+ 1
p , ck = − 2ak

z2
1−α/2

− 1
p and dk = a2

k

z2
1−α/2

.

Finally, qk+1 can be calculated by

qk+1 =
−ck − √

c2
k − 4bdk

2b
. (4)

Equation (4) is valid for quantiles below 0.5. An equation
for quantiles above 0.5 can be derived analogously. The
search should be continued until the bounds of the interval
[0, 1] are exceeded.

The rounded results of the second method are shown in
the last two columns of Table 1. For p = 100 the second
method selects 7 quantiles and for p = 1000 this method
selects 29 quantiles. The values in brackets show the confi-
dence interval of the belonging quantile in the range of the
probability.

The results of the first and the second method are com-
parably accurate. However, the binary search of the first
method seems to be circumstantial compared to the direct

calculation by Equation (4) in the second method. Further-
more, the calculation of

(
p
j

)
in Equation (1) involves the

handling of very small and very big values. This might
lead to problems in computer calculations and rounding er-
rors. Therefore, we recommend the second of the described
methods. All depictions in subsequent sections use quan-
tiles selected by the second method.

EXAMPLES

In the previous section we described how to select sev-
eral quantiles. In this section we use these selected quan-
tiles to depict stochastic processes with well known statis-
tic properties. This is useful to validate the results as in
[Bause and Eickhoff, 2003]. The implementation of the
stochastic processes is based on the random number gen-
erator described in [L’Ecuyer et al., 2002]. Because this
generator allows the choice of many substreams, it is suit-
able for many independent replications. As already men-
tioned in the introduction, the independent replications of
the stochastic processes are used to collect a set of indepen-
dent data for each Xi with 1 ≤ i ≤ ∞. To realize these
stochastic processes the random numbers are transformed
as follows.

ARMA Process: The behaviour of the first stochastic
process is comparable with the behaviour of a storage in an
inventory system. It is an ARMA(5, 5) process which is



(a) 50 replications (b) 100 replications

(c) 500 replications (d) 1000 replications

Figure 2: Several quantiles over time: periodic process.

defined by

Xi = 1 + εi +
5∑

k=1

1
2k

(Xi−k + εi−k), k ≥ 0

with the starting condition X−5 = X−4 = X−3 = X−2 =
X−1 = 100. {εi}∞i=1 is an independent Gaussian white
noise process ([Hamilton, 1994]). We selected four sets of
quantiles for p = {50, 100, 500, 1000} independent repli-
cations. The results are shown in Figure 1.

Periodic Process: The second observed process has a
periodic behaviour and is defined by

Xi = a · sin(ωi) + εi

The cycle length of the sine oscillation is given by T = 2π
ω

with the amplitude a. And again {εi}∞i=1 is an independent
Gaussian white noise process. This process is depicted in
Figure 2 for p = {50, 100, 500, 1000} independent replica-
tions.

Exponential Process: The behaviour of the third
stochastic process is comparable with the behaviour of a
buffer in a queueing system. It is defined by

Xi = ε′i · b(1 − e(i
ln(0.05)

l )).

The process {ε′i}∞i=1 is similar to the independent Gaus-
sian white noise process, but its distribution is exponential
(see [Law and Kelton, 2000]) with β = 1. The parameter

b stretches the distribution. The part in brackets of the for-
mula causes that the process is slowly converging towards
its marginal distribution. This is depicted in Figure 3 for
p = {50, 100, 500, 1000}.

Of course, a smaller value of p leads to a smaller set of
selected quantiles. Additionally, the quantiles of the smaller
set seem to fluctuate more. Further more, the quantiles of
areas with lower probability fluctuate more than the ones of
high probability. In Figure 1 and Figure 2 this can be ob-
served when comparing the bounds 0 and 1 with the center
(around 0.5) of the distribution. Because the distribution in
Figure 3 is not symmetrical, the quantiles at bound 1 fluc-
tuate more than the ones at bound 0.

These examples show, that this approach of depicting
quantiles is suitable for both symmetrical and asymmetri-
cal distributions, as well as converging and non converging
processes. However, we recommend to use at least 50 inde-
pendent replications. This makes sure that the selected set
of quantiles includes at least 5 different quantiles.

Random Walk: The last examined process behaves like
a random walk between 0 and 100. The random walks are
not stopped at this thresholds, but all values higher (resp.
lower) than these bounds are reduced to these values (com-
pare [Bause and Beilner, 1999]). The peculiarity of this
process is the constant value of the mean (e.g. the 0.5-
quantile), whereas all other quantiles are not constant and
tend to the thresholds 0 and 100 (see Figure 4(a) and 4(b)).
Therefore, the cumulative distribution function is in the be-



(a) 50 replications (b) 100 replications

(c) 500 replications (d) 1000 replications

Figure 3: Several quantiles over time: exponential process.

ginning very steep around the 0.5-quantile (Figure 4(c)),
but after a long simulation time it is very flat (Figure 4(d)).
Analysis of only mean values would show a constant be-
haviour, even though this example is transient and the cu-
mulative distribution is slowly converging to its marginal
distribution.

CONCLUSIONS

We described two methods of selecting quantiles. Both
methods delivered similar results. However, for further in-
vestigation we decided to use the method based on Inequal-
ity (2) because its complexity is lower.

This approach to depict several quantiles over time ap-
pears suitable for a variety of different transient behaviours.
We recommend to use at least 50 independent replications
to make sure, that the selected set of quantiles is reasonably
large. In finite-horizon simulation the replications do not
need to be processed in parallel. Therefore, a large number
of replications, e.g. p = 1000, is feasible.

Our last investigated example shows, that the analysis of
several quantiles provides a deeper insight into the analyzed
process than mean value analysis. Drawing conclusions en-
tirely based on mean value analysis is not recommendable
for complex models.
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